4 Products Microsoft and LinkedIn Need to Ship

An op-ed piece I wrote for VentureBeat:

Last week, Microsoft stunned the tech world with the largest ever software acquisition – the purchase of LinkedIn for $26.2 billion. While early news coverage has addressed plans to keep LinkedIn independent, there’s been little discussion about what exactly the two companies will do together. As someone who’s entrenched in the LinkedIn and Microsoft ecosystems, I thought I’d share four exciting products this acquisition makes possible:

1. Redefined business email

The quickest and broadest impact Microsoft can make with LinkedIn is to redesign its Outlook interface. The companies could easily bring LinkedIn insights, profile photos, etc. into the email experience (similar to what Rapportive offers today but with a seamless, actionable approach). Outlook could even show recent updates and thought leadership pieces from a particular profile as talking point suggestions to automatically populate in an email when selected.

Microsoft could also add automated email filtering and prioritization features with folder recommendations that improve email productivity. Imagine if you could get emails that meet certain criteria — say they come from a particular job title and are second-degree connections with at least 500 connections themselves — to stick in the top of your inbox until they receive your attention.

Read more …

Leave a comment

Filed under Blog Stuff, Enterprise, LinkedIn, Microsoft, Non-Technical-Read

Amazon, Google and Apple vs the Big 5 Unicorns on Hiring and Churn

I’ve received multiple requests to analyze employee churn and new hiring rates for big companies and unicorns with the approach I took earlier for studying engineering and sales retention rates. I figured I’d give it a shot – and combine all of the key metrics in one chart …

amazon_google_apple_unicorns_retention_hiring

How to read this:

Blue bar represents the number of expected new hires that particular company will make in a 30 day (one month) period. Black bars (negative values) indicate how many employees will churn in a one month period. The orange line (the top most numerical labels correspond to the orange line plot) represent the net change in hires per month (new hires less churn). The companies are ranked by churn from left to right in descending order (so highest churn on the left).

As you can see in the chart, the big three companies included in this analysis are Amazon, Apple and Google. The unicorns are Uber, Lyft, Airbnb, Pinterest and Snapchat. “Big 5” combines these unicorns together as if they were one whole company. Also note, this is looking at employees worldwide with any job title.

Key Insights:

  1. Apple is not hiring enough new heads when compared with Amazon and Google. In fact, the Big 5 unicorns combined will hire more net heads than Apple with almost 50% less employee churn.
  2. Amazon’s churn is the highest – losing a little over 10 people a day. However, this is not bad relatively speaking – Google loses 8-9 people a day, and Apple is a tad over 9 a day (and Amazon has 36% more employees than Google). Given the recent press bashing Amazon’s culture and the periodic press envying Google’s great benefits, their retention rates tell a different a story – that it’s closer to a wash. Big tech companies with great talent churn people at pretty similar high rates regardless it seems (have some more thoughts on this but will save those for another post).
  3. At these current rates, all of the companies here (collectively) will increase their employee size by 20K (19, 414 to be precise) heads by year end (this is new hires less churn). That’s a measly 5% increase in their current collective employee size – and this is across the Big 3 Tech Companies and Big 5 Unicorns.
  4. Let’s compare Amazon to the Big 5 Unicorns. The Big 5 will hire 79% as many incremental heads as Amazon in a month, even though their collective employee size is 24% that of Amazon’s. Amazon has been in business for much longer (2-3x days since incorporation), and the Big 5’s churn is 43% of Amazon’s figure – both factors contributing to the closeness in the incremental head rate between the two.

Want more details?

How did I calculate these figures? Take a look at my previous post on engineering retention for more details. Same caveats listed there apply here, and then some (such as how this depends on the participation rates of LinkedIn which may differ considerably internationally compared to the US market which my previous posts exclusively focused on). Feel free to connect or email me if you have any questions or feedback.

 

Leave a comment

Filed under Data Mining, Economics, Entrepreneurship, Google, LinkedIn, Management, Non-Technical-Read, Research, Startups, Statistics, Trends

Ranking Companies on Sales Culture & Retention

A company’s sales retention rate is a very important indicator of business health. If you have a good gauge on this, you could better answer questions such as: should I join that company’s sales department, will I be able to progress up the ladder, are reps hitting their numbers, are they providing effective training, should I invest money in this business, etc. But how does one measure this rate especially from an outside vantage point? This is where LinkedIn comes to the rescue. I essentially cross applied the approach I took to measuring engineering retention to sales.

sales_ret_2

This chart reveals several key technology companies ranked in reverse order of sales churn – so higher on the chart (or longer the bar) the higher the churn (so from worst at the top to best at the bottom).

So how are we defining sales churn here? I calculated the measurement as follows: I took the number of people who have ever churned in a sales role from the company and divide that by the number of days since incorporation for that respective company (call this Churn Per Day), and then I compute the ratio of how many sales people will churn in one year (the run rate i.e. Churn Per Day * 365) over the number of current sales people employed.

For ex. if you look at the top row, which is Zenefits, the value is 0.40 – which means that 40% of the current sales team size will churn in a one year period. In order to maintain that sales team size and corresponding revenue, the company will need to hire 40% of their team – and sooner than in a year as that churn likely spreads throughout the year as well as given new sales hire ramping periods (if you’re churning a ramped rep and say it takes one quarter to ramp a new sales rep, then you need to hire a new head at least one quarter beforehand to avoid a revenue dip).

A few more notes:

The color saturation indicates Churn Per Day – the darker the color, the higher the Churn Per Day.

Caveats listed in the previous post on engineering retention apply to this analysis too.

Leave a comment

Filed under Data Mining, Economics, Enterprise, Entrepreneurship, Job Stuff, LinkedIn, Non-Technical-Read, Startups, Statistics, Trends, Venture Capital

Top Tech Companies Ranked By Engineering Retention

(TL;DR) Here’s the ranking going from top to bottom (so higher / longer the better):

eng_ret

How did you measure this?

By running advanced Linkedin searches and counting up the hits. Specifically, for each company, at their headquarters location only, I searched for profiles that were or are software engineers, and had at least 1+ years of experience. Then I filtered these results in two ways:

1) Counting how many of those profiles used to work at the company in question (and not currently). Call this result Past Not Current Count.

2) Separately (not applying the above filter), filtering to those who are currently working at the company for at least 1+ years. Call this Current Count.

I also computed the number of days since incorporation for each respective company to be able to compute Churn Per Day – which is simply dividing Past Not Current Count by the number of days since incorporation.

Then I took this rate, and computed how long in years it would take for each company to churn through all of their Current Count or current heads who were or are software engineers and who’ve been with the company for at least 1 year (those who possess the most tribal wisdom and arguably deserve more retention benefits). Call this the Wipeout Period (in years) figure. This is what’s plotted in the chart above and is represented by the size of the bars – so longer the better for a company.

What does the color hue indicate?

The Churn Per Day (described in the previous answer). The darker the color the higher the churn rate.

Who’s safe and who’s at risk?

I would think under a 10 year wipeout period (esp. if you’re a larger and mature company) would be very scary.

In general (disclaimer – subjective – would like to run this over more comps) greater than 20 years feels safe, but if you’re dark green (and hence experience more churn per day) then in order to keep your wipeout period long you need to be hiring many new engineering heads constantly (but you may not always be hot in tech to be able to maintain such a hiring pace!).

What are the caveats with this analysis?

There are several, but to mention a few:

Past Not Current Count biases against older companies – for ex. Microsoft has had more churn than # of present heads because they’ve been in business for a long time.

I needed more precise filtering options than what was available from Linkedin to be able to properly remove software internships (although could argue that’s still valid churn – means that the company wasn’t able to pipeline them into another internship or full-time position) as well as ensure that the Past Not Current Count factored only software engineers at the time that they were working at that company. So, given the lack of these filters, a better description for the above chart would be Ranking Retention of Folks with Software Experience.

Also, this analysis assumes the Churn Per Day figure is the same for all folks currently 1+ years at their respective company, even though it’s likely that the churn rate is different depending the # of years you’re at the company (I’m essentially assuming it’s a wash – that the distributions of the historical Past Not Current vs Current are similar).

1 Comment

Filed under Blog Stuff, Computer Science, Data Mining, Entrepreneurship, Job Stuff, LinkedIn, Management, Non-Technical-Read, Research, Statistics, Trends, VC

Want to compete with Salesforce? Buy Marketo

An op-ed I wrote for TechCrunch:

There are several enterprise players that want a share of Salesforce’s business, but just aren’t making headway by knuckling up against the company’s dominant, entrenched SaaS CRM offerings. Rather than competing head on, a smarter approach for these businesses is to “front door” Salesforce, instead.

By acquiring Marketo, a competitor could get into Salesforce’s accounts, then, over time, work themselves down the funnel and leverage better integrations with Marketo in order to eventually displace Salesforce. Marketo’s strategic foothold in the enterprise and its current market value relative to potential acquirers like IBM, Microsoft, Oracle, SAP and even Salesforce make this a great time to buy the leading marketing automation vendor.

Many industry watchers overlook the mission-critical role Marketo plays in its customers’ go-to-market operations. The majority of Marketo’s 4,000 customers also use Salesforce, but the marketing automation system has access to more data about the funnel than its CRM counterpart. Marketo can sync bi-directionally with Salesforce, capturing all the data stored there, while also holding top-of-the-funnel lead behavior data that doesn’t get stored in CRM. Hence, it has access to an invaluable superset of data about a company’s potential and existing customers.

Read More …

Leave a comment

Filed under Enterprise, Entrepreneurship, Management, Non-Technical-Read, Startups, VC

How sales is disrupting marketing

An op-ed I wrote for VentureBeat:

The line between marketing and sales is getting blurrier by the minute. Sales reps are leveraging new sales acceleration tools like Tout, Yesware, Sidekick, and Outreach, and it feels like a new one comes out every quarter.

These specialized apps have become so sophisticated that they’re enabling sales to run their own campaigns and sidestep marketing automation. They help teams increase response rates through more personalization and control, a 1:1 touch, simple plain text messages, and more follow up vs. blanket general marketing blasts.

Read more …

Leave a comment

Filed under Uncategorized

Calculating LTV and CAC for a SaaS Company on a Rolling Basis

An op-ed I wrote with Tomasz Tunguz for Techcrunch:

One of the most critical metrics for software companies — but also one of the most difficult to measure — is the lifetime value of their customers (LTV). The lifetime value dictates how a company should spend its marketing and sales dollars.

Unfortunately, many early stage startups struggle to measure LTV, because they haven’t been around very long and, consequently, haven’t seen a large number of customers through their lifespans with the product.

Read more ..

Leave a comment

Filed under Uncategorized